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• Not just “know more”, but “know more of what you need to know”

MOTIVATION

• Higher frequency dynamics may not be accurate in high resolution numerical predictions

• Need a tool to promptly adapt to continually changing needs
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GOAL – select locations (H) and use observations (Obs) that will minimize 
the error (ErrV) of operator-specified parameters (V) at their usage 

time/area 
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NCOM ERROR PROGNOSTICS (B, Err) USING 
MONTE-CARLO SIMULATIONS
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Use all observations (Obs) in minimizing the error (ErrV) of operator-
specified parameters (V) at their usage time/area
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MREA07 (BP07) Trial
April 16 May 4 2007April 16 – May 4, 2007

• Lead by the NATO Undersea Research Center and with the participants:
– NURC, ITN and TNO for the Ocean observations

RNlNC ULB UAlg TUDelft for ocean Acoustics– RNlNC, ULB, UAlg, TUDelft for ocean Acoustics
– NRL/US and MIT/US for Ocean modeling and ensembles
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NCOM Observed Simulation Errors

•Increased resolution in the model does not increasesIncreased resolution in the model does not increases 
efficiency of assimilation



Ensemble estimate (Errp) is a consistent
estimate of observed NCOM errors (Errobs)( obs)

•Mean Ensemble Spread  of T gets smaller and S increases along the fronts as data 
becomes available
•Very good spread skill relation (red bins along positive slope lines) ~ 1•Very good spread-skill relation (red bins along positive slope lines) ~ 1
•Observed mean error variances were slightly over-predicted by the ensemble 
spread for TEMPERATURE and under-predicted for SALINITY



Impact of Observations in T Predictions 
( id l l i )(residual analysis error) 
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Measured Impact of Observations
in 4D re-analysis predictions at observations timein 4D re analysis predictions at observations time 
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Trial Summary

Re-analysis improved high resolution run (N2) on-scene allowing to keep 
higher frequency dynamics with statistics comparable to the smoother 
outer nest assimilating local data (and up to 24h earlier).



FINAL CONSIDERATIONS
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• Adapting forecast systems to end-user applications require solving two problems:

1. Select and adapt observations network

2. Assimilate observations to improve forecast errors of relevant parameters

• Ensemble based solutions seem to provide robust solutions for both the adaptation of 
sampling networks (e.g. Coelho et.al. 2010 –Oceans 2010 IEEE/MTS) and high resolution analysis 
problems (this work)problems (this work)


