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Orthogonal Waveforms
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6. Aperture Shading / Sidelobe Suppression Technique
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Our claim:

We can improve the spatial resolution of existing active sonar arrays 
by a factor of two without doubling the frequency or increasing realby a factor of two without doubling the frequency or increasing real 
array size.

ERAS works with 1D and 2D real arrays of various types
ERAS works with conventional waveforms such as CW and FM

2

ERAS works with steered beams
ERAS supports aperture shading functions
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I N T R O D U C T I O NI N T R O D U C T I O N

Mitigate observational uncertainties underwater by improving angular resolution

Conventional methods of increasing angular resolution in SONAR systems:
increasing the size of the sonar array 
increasing the operating frequency

ERAS achieves narrower beamwidth (finer angular resolution) without
increasing array size or operating frequency, which allows for:

Smaller, lighter SONAR systems
Operation at lower frequencies with commensurate reduction in acoustic 

attenuation

To further improve image quality we adapted an aperture shading / sidelobeTo further improve  image quality, we adapted an aperture shading / sidelobe 
cancellation technique to SONAR image processing

In this brief we present experimental results demonstrating the effectiveness 
of these novel techniques to achieve super resolution
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B A C K G R O U N D  [1]:B A C K G R O U N D  [1]:
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For a fixed aperture of length D, synthetic 
aperture responses are 1/2 as wide as real aperture 
receive beams.

OR
Synthetic aperture response is equivalent to the 

receive beam pattern produced by a real aperture of 0 4
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How can we use this assertion to improve 
the resolution of real aperture imaging 

arrays?
-10 -5 0 5 10
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πD/λ sinθ (radians)

[1] Mensa, D., “High Resolution Radar Cross[1] Mensa, D., “High Resolution Radar Cross--Section Imaging”, Section Imaging”, ArtechArtech HouseHouse, 1991, 1991
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H O W   I T   W O R K S:H O W   I T   W O R K S:

Simultaneously transmit signal A from one end and 
signal B from the other end. Assume signals A and B do 
not interfere.

Use spectrally separated continuous waves 
(CW) for Doppler estimation

0)

Phase Center Approximation [2]Phase Center Approximation [2] Orthogonal WaveformsOrthogonal Waveforms

The equivalent phase center approximation [2] states that 3 2 1 0 1 2 3
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The equivalent phase center approximation [2] states that 
in the far-field we may replace each bi-static transmitter-
receiver pair with a single mono-static element located at 
the mean location of each pair.

Use inversely frequency modulated (FM) 
pulses if range resolution is desired
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Thus, if pulse A is orthogonal to pulse B, then we 
have effectively formed a two-ping synthetic 

8 phase 
centers from 
transmitter A

8 phase 
centers from 
transmitter B

time time

We call these synthetic arrays of

5

aperture of 15 unique phase centers which is equal 
in length to the real aperture array and provides a 
two-fold improvement in spatial resolution.

[2] [2] BelletiniBelletini, A., Pinto, M., “Theoretical Accuracy of SAS , A., Pinto, M., “Theoretical Accuracy of SAS MicronavigationMicronavigation Using a DPCA”, Using a DPCA”, IEEE JOEIEEE JOE, Oct 2002, Oct 2002

We call these synthetic arrays of 
spatially shifted phase centers 
Expanded Real Apertures
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P R O P R O OO F F –– O F O F –– C O N C E P T   E X P E R I M E N T:C O N C E P T   E X P E R I M E N T:

11--D beam pattern response comparison using CWs and D beam pattern response comparison using CWs and p p p gp p p g
boresightboresight targettarget

ERAS Experiment Setup:

Static

0.3m

p p
(Top View)

Array Configuration:
Tri-Plane Retro-Reflector 
(target strength = -3.5 dB)

Target

ERAS Transmit 
CW ‘A’ and ‘B’ 

t th

A transmitter
B transmitter
Receive elements

Axis of 
Rotation

4m

θ

together

Waveforms:
A = 1 ms CW (6.25% cosine taper) 

center frequency = X kHz

Rotating
Array

Rotation center frequency  X kHz
B = 1 ms CW (6.25% cosine taper) 

center frequency = X + 2 kHz

6

Beam Pattern Configuration: horizontal plane, +/-90˚ in 1˚ increments
At each rotator angle transmit A and B simultaneously

Tests performed at NUWCDIVNPT Acoustic Test Facility in October 2008
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P R O P R O OO F F –– O F O F –– C O N C E P T   E X P E R I M E N T:C O N C E P T   E X P E R I M E N T:

11--D beam pattern response comparison using CWs and D beam pattern response comparison using CWs and 

0
Comparison of Real Aperture Receive Beam with ERAS
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The measured ERAS response is 55% 
as wide as the measured real aperture 

receive beam.
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P R O P R O OO F F –– O F O F –– C O N C E P T   E X P E R I M E N T:C O N C E P T   E X P E R I M E N T:

11--D beam pattern response comparison using CWs and D beam pattern response comparison using CWs and 

0
Comparison of Steered Real Aperture Receive Beam with Steered ERAS
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Note: ERAS, too, will suffer from grating 
lobes when operating at frequencies higher 

that those of the baseline array.
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P R O P R O OO F F –– O F O F –– C O N C E P T   E X P E R I M E N T:C O N C E P T   E X P E R I M E N T:

11--D beam scan response using CWs and 2 targetsD beam scan response using CWs and 2 targets

Objective: single-ping imaging resolution demonstration

p g gp g g

Static
Target 2

Targets: 2 tri-plane targets > 4m from array face (0˚ array rotation),
targets ±3˚ from array boresight

Static
Target 1

Array Configuration:
Target 2

0.3m

Target 1

0.3m
Top View

A transmitter
B transmitter
Receive elements

4m
3˚

Receive elements

transmit CW 
‘A’ and ‘B’ 
together

Waveforms:3˚
Form multiple 

steered receive 
beams to image 

targets

Waveforms:
A = 1 ms CW (6.25% cosine taper) 

center frequency = X kHz
B = 1 ms CW (6.25% cosine taper) 

center frequency = X + 2 kHz
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Static
Array

Tests performed at NUWCDIVNPT Acoustic Test Facility in October 2008
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P R O P R O OO F F –– O F O F –– C O N C E P T   E X P E R I M E N T:C O N C E P T   E X P E R I M E N T:

11--D beam scan response using CWs and 2 targetsD beam scan response using CWs and 2 targets
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whereas the real aperture sonar sees only 
one merged highlight
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N A R N A R RR A G A N S E T A G A N S E T TT B A Y   E X P E R I M E N T:B A Y   E X P E R I M E N T:

22--D array beam scan with FM waveformsD array beam scan with FM waveformsyy

2-D array tests use 2 laterally offset transmitters (A & B), 
which produce 2 horizontally offset phase center array.

Phase center locations and shading functionPhase center locations and shading function
phase

centers
A

phase
centers

B

C

phase
centers

A

C

A B

D

Waveforms:
A 4 l i li FM hi

11

Anticipate a two-fold improvement in azimuth resolution, 
with no improvements in elevation resolution.

A = 4 ms up-sloping linear FM chirp
bandwidth = 4kHz 

B = 4 ms down-sloping linear FM chirp
bandwidth = 4kHz
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N A R N A R RR A G A N S E T A G A N S E T TT B A Y   E X P E R I M E N T:B A Y   E X P E R I M E N T:
22--D real aperture array horizontal beam scan with FM D real aperture array horizontal beam scan with FM 
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N A R N A R RR A G A N S E T A G A N S E T TT B A Y   E X P E R I M E N T:B A Y   E X P E R I M E N T:

22--D ERAS array horizontal beam scan with FM D ERAS array horizontal beam scan with FM 
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The ERAS horizontal image resolved both 
static targets

Array 
rotated 

4˚
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A

phase
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Output
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N A R N A R RR A G A N S E T A G A N S E T TT B A Y   E X P E R I M E N T:B A Y   E X P E R I M E N T:

Comparison of real aperture and ERAS 2Comparison of real aperture and ERAS 2--D target image D target image 

0
ERAS 2-Dimensional Target ImageReal Aperture 2-Dimensional Target Image
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improvement

No improvement in vertical resolution due to 
use of horizontally offset transmitters only

A transmitter
B transmitter
Receive 
elements
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N A R N A R RR A G A N S E T A G A N S E T TT B A Y   E X P E R I M E N T:B A Y   E X P E R I M E N T:
22--D real aperture array vertical beam scan with FM D real aperture array vertical beam scan with FM 

Real Aperture Vertical Beam Scan
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Any sector scanning sonar must produce 
focused images of complex bottom 

reverberation, not just simple free-field point 
scatterers
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N A R N A R RR A G A N S E T A G A N S E T TT B A Y   E X P E R I M E N T:B A Y   E X P E R I M E N T:

22--D ERAS array vertical beam scan with FM waveformsD ERAS array vertical beam scan with FM waveforms

ERAS Vertical Beam Scan
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sharpened the image of the complex bottom reverberation.
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ERAS fully supports high-resolution imaging of complex scenes

Use of 4 transmitters (2 horz., 2 vert.) will provide 2-D improvements!20m
Bottom
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N A R N A R RR A G A N S E T A G A N S E T TT B A Y   E X P E R I M E N T:B A Y   E X P E R I M E N T:

Comparison of real aperture and ERAS 2Comparison of real aperture and ERAS 2--D target image D target image 
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ERAS 2-Dimensional Target ImageReal Aperture 2-Dimensional Target Image
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transmitters, we achieve no horizontal 
resolution improvement

C transmitter
D transmitter
Receive 
elements
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A P E R T U R E  S H A D I N G   F U N C T I O N:A P E R T U R E  S H A D I N G   F U N C T I O N:

Comparison of real aperture and ERAS 2Comparison of real aperture and ERAS 2--D target image at target D target image at target 
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ERAS 2-Dimensional Target ImageReal Aperture 2-Dimensional Target Image
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range (vertical beam scan) range (vertical beam scan) with applied aperture shading functionwith applied aperture shading function
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ERAS fully supports aperture shading functions for 
reduction of spatial sidelobes at the expense of slightly 
wider mainlobes

Lo sidelobes reject n anted energ from nearbed ei
gh

t

0.8

1

-90˚ -90˚

18

C transmitter
D transmitter
Receive 
elements

Low sidelobes reject unwanted energy from nearby 
scatterers and help preserve shadow contrast

Could maintain narrow mainlobe and supress  
sidelobes by incorporating SVA into processing chain
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Spatially Variant Spatially Variant ApodizationApodization (SVA)(SVA)
S I D E L O B E   C O N T R O L   A L G O R I T H MS I D E L O B E   C O N T R O L   A L G O R I T H M

RADAR technique applied to SONAR image processingRADAR technique applied to SONAR image processing

Raised-Cosine Function
w(n) = 1 – 2αcos(2πn/N),      
0 < α < 0.5

1-Dimensional 2-Dimensional

α = 0      Uniform weighting
α = 0.43 Hamming weighting
α = 0.5   Hanning weighting

Nyquist-sampled IPR

Reference:

Weighted Image  
g’(m) = -α(m)g(m-1) + g(m) – α(m)g(m+1)

Reference:
Stankwitz, H.C., Dallaire, R.J., Fienup, J.R., “Nonlinear Apodization for Sidelobe Control 
in SAR Imagery”, IEEE Transactions on Aerospace and Electronic Systems Vol. 31, No. 
1, January 1995
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P R O S / C O N S   A N D   A P P R O S / C O N S   A N D   A P PP L I C A T I O N SL I C A T I O N S

Pros:

Expanded real apertures allow existing active real aperture sonar systems to produce 
responses that are half as wide as conventional receive beams.

Pros:
Reduced need to double frequency for substantially improved spatial resolution

o Prevents excessive attenuation loss
Supports CW and FM pulses
Bandwidth (FM) and spectral separation (CW) requirements are not prohibitive
Can mitigate impact of grating lobes at some steering angles

56 transmitting elements

Supports conventional aperture shading functions and electronic steering

Cons:
Fewer transmit elements produce lower source level (good application for single crystal)

o Consider larger transmit groupings (decrease size as we approach candidate target)
R lt i ll h t l l ti i to Results in smaller phase center arrays, less resolution improvement

o Reduces transmit beam coverage
o Apply beam broadening phases to larger blocks
o Steer transmit blocks

Random amplitude and phase errors in real array are periodic errors in composite array
Mitigated by averaging of overlapped phase centers

3

4

er
la

ps

Mitigated by averaging of overlapped phase centers

Applications:
Existing systems – classification and imaging
Smaller, limited aperture systems
UUVs – sector scanning sonars, sidescan sonars, flank arrays, bathymetry

1

2 # 
ov

e

20

g , , y , y y
saves power, weight, volume

Adding a 3rd transmitter extends the aperture 
further without adding additional receive 
channels (beam width = 3/8 of conventional)

2 vertically offset 
transmitters allows 1 
receive array to estimate 
bathymetry.



Expanded Real AperturesExpanded Real Apertures
N E A R N E A R –– T E R M    A C T I V I T I E ST E R M    A C T I V I T I E S

US Patent application in progress

High-resolution Expanded Real Aperture Sonar array designed and 
construction is in progress

Moving platform in water runs in October 2010 to investigate effects ofMoving platform in-water runs in October 2010 to investigate effects of 
Doppler on ERAS performance

Upcoming studies:
o Shadow contrast experiments with high-frequency systems
o Waveform orthogonality studies for BW-limited systems 

• Optimizing signal parameters 
• Pulse coding techniquesPulse coding techniques
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Expanded Real AperturesExpanded Real Apertures
22--Dimensional Array Results with FM WaveformsDimensional Array Results with FM Waveforms

Dodge Pond Test Facility (ATF) 26-30 January 2009
High frequency 2 Dimensional target image comparison at target range
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…and, as expected, because we used only 
laterally offset transmitters we achieve no
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laterally offset transmitters we achieve no 
vertical resolution improvements.

Use of 4 transmitters will provide 2-D 
improvements (in progress).

A transmitter
B transmitter
Receive 
elements
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22--Dimensional Array Results with FM WaveformsDimensional Array Results with FM Waveforms

Dodge Pond Test Facility (ATF) 26-30 January 2009
High frequency horizontal target image comparison at target range
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Comparison of HF Real Aperture Imaging with HF ERAS horizontal Imaging
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…the measured high-frequency horizontal 
ERAS target image is 48% as wide as the
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Σ

Output

A B ERAS target image is 48% as wide as the 
measured real aperture image.
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High frequency vertical target image comparison at target range
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Comparison of HF Real Aperture Imaging with HF ERAS vertical Imaging
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…as expected, because we used only 
laterally offset transmitters we achieve no

25

Σ

Output

A B laterally offset transmitters we achieve no 
vertical resolution improvements.
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Dodge Pond Test Facility (ATF) 26-30 January 2009
Two target high frequency 2 Dimensional target image comparison at target range
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Two target high-frequency 2-Dimensional target image comparison at target range

HF ERAS 2-Dimensional Target ImageHF Real Aperture 2-Dimensional Target Image
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…and, as expected, because we used only 
laterally offset transmitters we achieve no
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laterally offset transmitters we achieve no 
vertical resolution improvements.

Use of 4 transmitters will provide 2-D 
improvements (in progress).

A transmitter
B transmitter
Receive 
elements



Expanded Real AperturesExpanded Real Apertures
22--Dimensional Array Results with FM WaveformsDimensional Array Results with FM Waveforms

Dodge Pond Test Facility (ATF) 26-30 January 2009
Two target high frequency horizontal target image comparison at target range
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…ERAS easily resolved the two targets 
whereas the real aperture resolved only one
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Output

A B whereas the real aperture resolved only one 
target.



Expanded Real AperturesExpanded Real Apertures
Simulated 2Simulated 2--Dimensional Array Results with CW WaveformsDimensional Array Results with CW Waveforms

22--D Array Layout, 2D Array Layout, 2--D Phase Centers and 2D Phase Centers and 2--D Aperture Shading FunctionD Aperture Shading Function

For 2-D arrays we need 4 transmitter groups instead of 2.  
Each transmitter results in a corresponding array of 
phase centers...

…which are then coherently summed together to produce 
a 2-D composite array of phase centers.
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Simulated 2Simulated 2--Dimensional Circular Array Results with CW Dimensional Circular Array Results with CW 

WaveformsWaveforms
P l Ch t i ti D ti 0 010 d S ti 1000 HPulse Characteristics: Duration = 0.010 seconds, Separation = 1000 Hz
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Simulated 2Simulated 2--Dimensional Circular Array Results with CW Dimensional Circular Array Results with CW 

WaveformsWaveforms
P l Ch t i ti D ti 0 010 d S ti 1000 HPulse Characteristics: Duration = 0.010 seconds, Separation = 1000 Hz
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Spatially Variant Spatially Variant ApodizationApodization (SVA)(SVA)
S I D E L O B E   C O N T R O L   A L G O R I T H MS I D E L O B E   C O N T R O L   A L G O R I T H M

RADAR technique applied to SONAR image processingRADAR technique applied to SONAR image processing

Raised-Cosine Function
w(n) = 1 – 2αcos(2πn/N),      
0 < α < 0.5

1-Dimensional 2-Dimensional

α = 0      Uniform weighting
α = 0.43 Hamming weighting
α = 0.5   Hanning weighting

Nyquist-sampled IPR

Reference:

Weighted Image  
g’(m) = -α(m)g(m-1) + g(m) – α(m)g(m+1)

Reference:
Stankwitz, H.C., Dallaire, R.J., Fienup, J.R., “Nonlinear Apodization for Sidelobe Control 
in SAR Imagery”, IEEE Transactions on Aerospace and Electronic Systems Vol. 31, No. 
1, January 1995


