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using polynomial chaos expansions
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Motivation:
Environmental Variability Observed during GLINT10 
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Objectives
 To develop forward acoustic modeling techniques which predict the
probability density function (pdf) of the acoustic field for specified pdfs of the
environmental uncertainty
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Technical Approach

Polynomial Chaos Expansions of Propagation 
through Uncertain Environments

Expansion of environmental uncertainty into uncorrelated EOFs with specified
(uncorrelated Gaussian) pdfs

Expand the acoustic field in polynomials and products of polynomials in these
uncorrelated GRVs (the Polynomial Chaos). Polynomials are orthogonal under
the pdf weight which leads to a significant reduction in cross terms.

Polynomial Chaos approach may be applied intrusively or non-intrusively

Intrusive formulation may provide more insight

Non-intrusive formulation may be more robust and is easier to apply to
legacy codes

Polynomial Chaos expansions are different than moment equations

When converged, any statistical property of the field may be calculated,
including pdf
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Introduction Polynomial Chaos into the 
Perturbed Coupled Mode Equation

Start with the 2-D 1-way coupled mode equation

Factor the range and depth dependence of the environmental variability

for ξ random use the perturbation approximations
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Using PC Expansions to Evaluate Adiabatic 
vs Non-Adiabatic Propagation Through 

Uncertainty

Simple and powerful expressions for decorrelation of normal modes for
adiabatic propagation in random waveguides exist

Would like to evaluate for cases of interest the accuracy of the adiabatic
assumption

When in a mode coupling environment is this a good approximation

For what modes

Interacting with what vertical and horizontal fluctuation scales

The polynomial chaos expansion approach offers a tool for conducting such a
study
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Polynomial Chaos Expansion of Log Modal 
Amplitudes a Natural Choice for Studying Adiabaticity

Perturbation coupled mode equation

Polynomial Chaos Expansion

In the Adiabatic Case
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Polynomial Chaos Expansion of Log Modal 
Amplitudes a Natural Choice for Studying Adiabaticity

Perturbation coupled mode equation

Polynomial Chaos Expansion

But in the general Case
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Horizontal Resonance Vertical Resonance
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Horizontal and Vertical Resonances
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Example: 2 DOF Random Environment

EOF 1 l=550 m, 4.9 m/s

EOF 2 l=38 m, 2.6 m/s
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Mode number

Propagation Through Summer Shallow Water 
Environment at 1500 Hz

Shallow water mode shapes (500 Hz) EOFs
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500 Hz Yellow Shark 



NATO UNCLASSIFIED

Environment to Acoustic Transfer of Uncertainty

21-Oct-10 slide 13

PC vs Monte Carlo Mean at 500 Hz
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PC vs Monte Carlo Scintillation at 500 Hz
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Std Dev of Angle{an} vs Im{PC}
500 Hz
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Std Dev of Angle{an} vs Im{PC}
500 Hz
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Mode 1 Adiabaticity 500 Hz



NATO UNCLASSIFIED

Environment to Acoustic Transfer of Uncertainty

21-Oct-10 slide 18

Mode 2 Adiabaticity 500 Hz
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Mode 3 Adiabaticity 500 Hz
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Mode 4 Adiabaticity 500 Hz
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Mode 5 Adiabaticity 500 Hz
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Mode 6 Adiabaticity 500 Hz
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Mode 7 Adiabaticity 500 Hz
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Mode 8 Adiabaticity 500 Hz
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Mode 9 Adiabaticity 500 Hz
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Mode 10 Adiabaticity 500 Hz
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Mode 11 Adiabaticity 500 Hz
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Non Adiabaticity Conclusions

Polynomial Chaos expansion agrees closely with Monte Carlo 

Comparisons between the imaginary part of the 1st order log PC coefficient and 
the adiabatic approximation show good agreement for modes 1-5

Adiabatic approximation limited to the lowest order modes which do not 
interact with EOF 1

Higher order modes are strongly non-adiabatic

Especially modes 7 and 8 due to horizontal resonances with the 550 m 
horizontal correlation length scale of EOF 1

The amplitude of modal scattering fluctuations can be as great as 4 dB



NATO UNCLASSIFIED

Environment to Acoustic Transfer of Uncertainty

21-Oct-10 slide 29

General Conclusions

The polynomial chaos expansion of the log modal amplitude of the coupled 
mode equations provides a rigorous method for transfering environmental 
uncertainty to acoustic uncertainty

Various moments can be calculated

Probability density functions may be evaluated

The log modal polynomial chaos expansions can also yield good estimates for 
when the adiabatic approximation is valid

The PC expansion technique offers value as a diagnostic tool for evaluating the 
magnitude of scattering effects in coupled mode propagation 

also for obtaining accurate solutions for the modal statistics at lower to 
mid frequencies and/or for slight to moderate variability

The log modal amplitude PC equations show explicitly the contributions of 
horizontal resonance and the interaction between the modes and the vertical 
structure
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Uncertainties and Risk

Polynomial Chaos

High variability causes problems

Non-convergence of log-modal amplitude intrusive formulation

High N truncation of polynomial expansion for traditional intrusive
formulation

Large numbers of degrees of freedom cause problems

How to handle in a probabilistic way the dumping of energy out of the
waveguide at points where the horizontal slowness exceeding slowness of
the bottom
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End of Talk
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PC vs Monte Carlo pdf

EOFs 1-2, Multiple Modes
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Resulting Acoustic Variability at 500 Hz
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Resulting Acoustic Variability at 2.8 kHz
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