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• The Operational Oceanography paradigm
• The GMES Marine Core Service-MyOcean
• Mediterranean Operational Oceanography Networkp g p y
• Uncertainty reduction in MFS
• The forecast uncertainty conundrumy
• The MFS deterministic operational forecasting system
• A Bayesian Hierarchical Model (BHM) to quantify theA Bayesian Hierarchical Model (BHM) to quantify the 

Surface Vector Wind (SVW) uncertainty and 
distributions

• A new method of Ocean Ensemble Forecasting using
the BHM-SVW 

• Comparison with other ensemble methods
• Final considerations



The The OperationalOperational
OceanographyOceanography paradigmparadigmOceanographyOceanography paradigmparadigm
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The GMES Marine Core The GMES Marine Core 
Service implementation: theService implementation: theService implementation: the Service implementation: the 

MyOcean project (2009MyOcean project (2009--2012)2012)
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Operational oceanography Operational oceanography 
in the Mediterranean Sea:in the Mediterranean Sea:
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http://www.moon-oceanforecasting.eu
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MOON MOON largelarge scale data scale data 
collectioncollectioncollectioncollection
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MOON LARGE SCALE MOON LARGE SCALE 
data collection: real time datadata collection: real time datadata collection: real time data data collection: real time data 
coverage (2004coverage (2004--2008 period)2008 period)

gliders SOOP ARGO M3A Buoy



MOON recent developments: MOON recent developments: 
d t h f ti ld t h f ti ldata exchange from national data exchange from national 

networks observatoriesnetworks observatories
The MyOcean Validation network composed of national

real-time transmitting stations

wave, surface meteorological 
parameters and sea level 



Marine and coastal Marine and coastal 
environment:  limited area environment:  limited area 
modelling for the shelf and coastsmodelling for the shelf and coasts
MyOcean disseminates daily forecasts to 13 nested national models every day

EuroGOOS Conference, Exeter, 
2008Athens, Member Assembly, 4‐5 March 2008

helf and sub‐regional models now reach 1 ‐ 3 km resolution



OperationalOperational oceanographyoceanography: : 
1010 yearsyears ofof qualityquality increaseincrease10 10 yearsyears ofof qualityquality increaseincrease
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Assimilation of glider observations Assimilation of glider observations 
of T S and driftof T S and driftof T, S and driftof T, S and drift

THE MOST ACCURATETHE MOST ACCURATE 
ESTIMATES FOR ALL 
PARAMETERS WHEN 
ALL OBSERVATIONS 
ARE ASSIMILATED 
SIMULTANEOUSLY
(Dobricic et al. 2010 JDAO)



Assimilation of Argo float Assimilation of Argo float 
position observationsposition observationsposition observationsposition observations
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The forecast uncertainty conundrumThe forecast uncertainty conundrum
• Uncertainty principle of W Heisenberg (1927):• Uncertainty principle of W.Heisenberg (1927):

– There is a theoretical limit on the combined accuracy of
simultaneous measurements of position and momentum that
is related to Planck’s constant.

• In the ocean the question is: 
Wh t i th li it f f t ?– What is the accuracy limit of ocean forecasts? 

– How can we establish a framework for Ocean Ensemble 
Forecasts based on objective means?o ecasts based o object e ea s

• Uncertainty of ocean forecasts depends on:
– Ocean Initial condition errors 
– Atmospheric forcing errors
– Model errors (Physics, numerics)

• We concentrate on atmospheric forcing errors due the 
surface winds



The MFS deterministic forecast systemThe MFS deterministic forecast system
Forecast and analyses production cycle 
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ECMWF NWP surface winds ECMWF NWP surface winds 
uncertainty over the Med Seauncertainty over the Med Seauncertainty over the Med Seauncertainty over the Med Sea
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Building the Building the windwind distributionsdistributions usingusing BayesianBayesian
HierarchicalHierarchical ModellingModelling (BHM(BHM--SVW) SVW) 

Process model stage: 

Conceptual and implementation blocks:

g
Raylegh friction surface model

translated into a stochastic finite 
difference equationdifference equation



Building the Building the windwind distributionsdistributions usingusing BayesianBayesian
HierarchicalHierarchical ModellingModelling (BHM(BHM--SVW) SVW) 

Conceptual and implementation blocks:
Data Stage: QSCAT winds and

N i l W th P di ti (NWP) l /f tNumerical Weather Prediction (NWP) analyses/forecasts

QSCAT

ECMWF



BHMBHM--SVW realizations: example for SVW realizations: example for 
February 7, 2005 at 18:00 GMTFebruary 7, 2005 at 18:00 GMT



The BHMThe BHM--SVW SVW 
Ocean Ensemble ForecastOcean Ensemble Forecast

methodmethod
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BHMBHM--SVWSVW--OEF initial condition spread: OEF initial condition spread: 
amplification of the uncertainty due to amplification of the uncertainty due to 
winds where there is no data assimilatedwinds where there is no data assimilatedwinds where there is no data assimilatedwinds where there is no data assimilated

Initial condition spread      

Sea Surface Temperature

Initial condition spread      

Uncertainty is 
concentrated at theconcentrated at the 

mesoscales

Sea Surface HeightSea Surface Height



BHMBHM--SVWSVW--OEF last forecast day OEF last forecast day 
spreadspread

Initial condition spreadInitial condition spread

Sea Surface Height

10-th fcst day spread

Initial condition ensemble
spread has 

amplified at the 10 fcst dayamplified at the 10 fcst day
in mesoscale regions



BHMBHM--SVWSVW--OEF last forecast day OEF last forecast day 
spreadspread
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Ocean Ensemble Forecast ExperimentsOcean Ensemble Forecast Experiments

NAME OF THE EXPERIMENT ENSEMBLE METHOD

BHM-SVW-OEF-16 MEMBERS GENERATED BY 
REALIZATIONS OF BHM-SVW 
with full resolution model (1/16)

EEPS-OEF MEMBERS GENERATED BY 
ECMWF EPS WINDS, SAME 
INITIAL CONDITION

TIRP-EOF MEMBERS GENERATED BY 
PERTURBED INITIAL 
CONDITIONS

BHM-SVW-OEF-4 MEMBERS GENERATED BY 
REALIZATIONS OF BHM-SVW 
with low resolution model (1/4)with low resolution model (1/4)



Comparison TIRPComparison TIRP--OEF and BHMOEF and BHM--SVWSVW--
OEF spreadOEF spread

10-th fcst day spread

BHM-SVW-OEF

10 th fcst day spread

TIRP-OEF

TIRP Perturbations vertical structure has been chosen ad-hoc
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Final considerationsFinal considerations
• A new method to produce realistic distributions of surface• A new method to produce realistic distributions of surface 

winds (SVW) from QSCAT and NWP analyses and 
forecasts has been developed (Milliff et al., 2009, 

b itt d)submitted)
• BHM-SVW distributions are used to design a new ocean 

ensemble forecasting method: BHM-SVW-OEF (Bonazziensemble forecasting method: BHM SVW OEF (Bonazzi 
et al., 2009, submitted)

• The BHM-SVW-OEF produces 10 days forecast spread at 
th l d i th th lithe mesoscales and in the upper thermocline

• Ad-hoc I.C. perturbations can produce similar results while 
large scale NWP ensemble prediction winds are notlarge scale NWP ensemble prediction winds are not 
effective

• BHM-SVW-OEF coupled to IC condition perturbation 
fmethods promises in the future to contribute to the 

understanding of the ‘uncertainty conundrum’



• Additional slides if neededAdditional slides if needed



MFS MFS forecastforecast accuracyaccuracy assessmentassessment
((yearyear 2005, 2005, TonaniTonani etet al., 2010)al., 2010)
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