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Calibration and Validation of Direction-Finding HF Radar
Ocean Surface Current Measurements

Comments here are
(mostly) restricted to
direction-finding systems
and, in particular, to the
CODAR SeaSonde
system

All systems have “CAL-
VAL” requirements and
many of them overlap
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All systems have “CAL-VAL” requirements
and many of them overlap
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Think of the CAL-VAL problem as the need to identify and
guantify errors in the measurements

Temporal

The exact position is unknown and
mixed for most experiments

Graber et al. '97 dePaolo & Terrill '0
Ohlmann et al. ‘07 Laws et al. ‘10
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Sub-Grid Spatial

“Catch-and-release” drifter experiments
conducted by Carter Ohlmann and others
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Sub-Grid Spatial

“Catch-and-release” drifter experiments
conducted by Carter Ohlmann and others
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S evereall Ohlmann shows very clearly
bbb e Ish L G LMY that averaging sub grid scale
velocity variability improves

1 the rms comparisons between
HF radar and drifter mean

[l velocities
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- Low energy envwonment -
| |v|~4 cml/s ] After about 15 independent
TR drifter observations the
. ok | variance and the rms
Does sub-grid noise level |KuEEIESAZUVEIRTCE oy

| scale with 2? | plateaus
Ohlmann et al. ‘07
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OK so,

Graber et al. (97) and Ohlmann et al. (07)
showed that mismatched spatial sampling
can explain a large part of the error

What about the instru-
ment-induced error?

Paduan-9
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CODAR Speed (cmfs)
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Station #4: Corrected Antenna Patterns

16% better with calibrated patterns
(for this case and this grid point)
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Direction finding systems depend on knowing
the angular response pattern for each co-
located antenna element

For the SeaSonde system, that is two loops
and a monopole element; the
loops(theoretically) have a cos([) response

...... SO DO N <
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Lk

180
COPE-3 north site SeaSonde uncorrected (solid) and measred
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R/V John Martin
R/V Mussel Point

April 2008 drifter experiment

32 drifters

Wright




April 2008 drifter experiment
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April 2008 drifter experiment
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Antenna calibration is accomplished by moving a transponder slowly around an arc ~1

km from the radar site;
GPS position and time
must also be recorded

Paduan et al. (06)
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Validation tests against moored ADCP currents can also indicate
whether there are errors in the direction finding due, presumably,
to the distortions Iin the antenna patterns;

However, it is impractical to cover many different angles

Paduan et al. (06) 5I%
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Validation tests against moored ADCP currents can also indicate
whether there are errors in the direction finding due, presumably,
to the distortions Iin the antenna patterns;

However, it is impractical to cover many different angles
Paduan et al. (06) X

. ?‘""z RMS difference and correlation between

' @ radar-derived and ADCP radial currents

! can be computed for all angle bins on
the same range cell (arc)

“““

If the minimum RMS difference and
maximum correlation do not fall on
the angle bin for the mooring
location, then the HF radar
direction-finding algorithm is likely to
be placing the radar observations in
the wrong location
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Simulations: use simulated
Doppler back-scatter spectra—

5 )

for first-order, Bragg returns g
only—with a range of surface |8 2
current patterns and a range | %
of antenna distortion patterns. E ~ o~ S &
5 oSiasssssenel || S
The simulated backscattered Py a——
electromagnetic amplitude 40 |l 4 5T 5 R T G

from the sea surface Is given 40 20 0 2 40

by: GRID AXIS X (km)
- de Paolo & Terrill (07); Laws et al. (10)

Amplitudes are zero-mean, Gaussian random variables
whose variances are proportional to the spectral energy of
the resonant waves. The wave spectra are assumed to
follow the cardioid function of the equilibrium waves:

6.—6,

G(0.,0,) = a+(1- a)cos”
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Laws et al. (10) used range of
current scenarios can be created by
superposing a downwind current at
3% of the wind speed with a linear
sheared flow

RADIAL CURRENT (cms™)

0 50 100 150

Varying the wind direction and shear
magnitude leads to a range of
Doppler parameters statistically
similar to those found at several
U.S. West Coast HF radar sites

RADIAL CURRENT (cms™)

Each simulated case Is formatted to
be read and processed by Codar’ s
standard radial processing software

RADIAL CURRENT (cms™)

0 20 100 150
ANGLE FROM X AXIS (deg)
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The reference case-ldeal Antenna Pattern Simulation

Parameters mimicked a 12.15 MHz SeaSonde configuration for

which the velocity (Doppler) resolution is:
currents bearings

2000

2T 2nAff. & “

Laws et al. (10)

RMS Current Error is
2.9 cm/s I.e., slightly '
better than the velocity 0 50 100150
precision

Next, effects of antenna
pattern distortions can
be investigated

SPEED (cms™) DIRECTION (deg)
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How distorted Is your pattern?

A single pattern distortion parameter can be created by
comparing the RMS difference between the observed pattern
and a “mildly distorted” cosine function

Modest Distortion Severe Distortion
Laws et al. (10)
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Why are error descriptions
SO important?

Besides the obvious
reasons, modelers
need the error-error
covariance functions to
assimilate HF radar-
derived surface current
flelds

Or do they?

. Paduan &|Shulman (04)
123W 122W 123W
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AOSN-II Aug-Sep 2003

Depth (m)

ICON Model*, ICON Model
With CODAR®: Without
Assimilation Assimilation

Data assimilation of surface
current fields has been shown on
many occasions to benefit the
models down to depths ~100m

True even though we have not

- Shulman & Paduan (08)
vet prOV|ded accurate error 1 8 5 7 9 11 13 15 17 19 21 23 25 27 29 31

covariance functions
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What does the modelers CAL-VAL diagram look like?
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Surface-to-deep velocity constraint
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Conclusions

+

A good deal of the error Is attributed to environmental
variations, which lead to sampling discrepancies

Instrument error in CODAR-type systems can be

reduced somewhat (~20%) by using measured
antenna patterns

Error appears to scale with antenna distortion

Modelers should just get on with assimilating the data
even though full statistics are unknown
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